5. Troubleshooting Models¶
5.1. Is the model wrong, or am I?¶
If a model doesn’t meet expectations then it is possible that either expectations or the model are out of line with reality. The difficulty is, of course, how to tell which. In cases where predictions can be compared to actual measurements, these can be used to determine what is wrong with the model. Are all outliers in a cycle model on a certain type of road, for example? The model is probably over or underestimating the effect of traffic. All in a certain part of town? The model could be misestimating the weight of a particular origin or destination. Isolated errors? These can be caused by the spatial network model misrepresenting what is actually there; for example, roads disconnected in the model when they are connected in reality.
In other cases, we have no predictions with which to be sure, but the model doesn’t seem to match expectations. Two techniques can be used to drill into why the model predicts what it does; and hence help decide whether the results are likely to be correct.
Links with low flow in the model which we didn’t expect¶
If a flow is unexpectedly low, then you as the user likely have an expectation of which origins and destinations should cause that flow. sDNA+ allows plotting of individual routes between origins and destinations, so it is possible to select some and try it.
- Pick an origin/destination pair. Note down their object IDs in the network dataset. Suppose for this example, the origin has id 482 and the destination is 9907.
- Run sDNA Geodesics with the same configuration as the model run. :
- Add “n” to the list of radii, e.g. 1000, 2000, 3000, 4000, n
- Set origins to 482 and destinations to 9907 (or whichever origin and destination id you noted down in step 1)
Be careful not to run sDNA+ Geodesics without specifying an origin and destination – or a LOT of data will be generated (routes for every origin/destination pair).
On inspecting the geodesic, one of two errors may be apparent:
- Geodesic is generated for radius n but not the radius used in analysis. This means the endpoints were too distanct for the chosen radius.
- Geodesic is generated between the endpoints but not passing through the expected link. This implies that the analysis metric for routes through the expected link must be higher than the analysis metric for the actual geodesic. Inspecting the geodesic’s analysis metric and compare to metrics generated from the expected route. The latter is shown for each link in the original cycle model output, as Hybrid Metric Fwd (HmF) and Hybrid Metric Bwd (HmB). Inspection may reveal why the model regards the unexpected route as preferable, or may hint at problems in the spatial model.
Links with high flow in the model which we didn’t expect¶
Easy features for establishing who is using each link in the model will be added to sDNA during 2016. In the meantime there is a way, but please get in touch with us if you need to discuss it.